

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

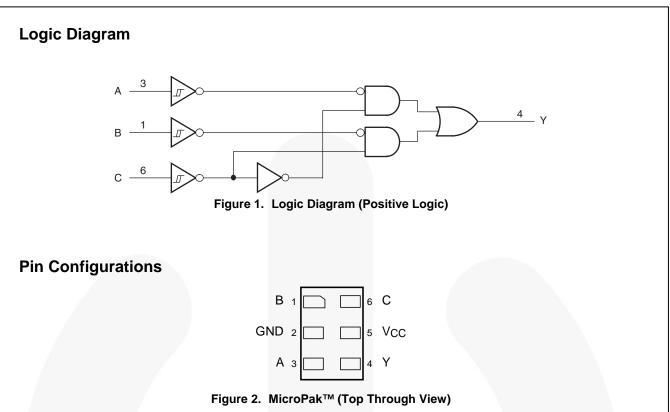
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

October 2010

74AUP1T97 TinyLogic[®] Low Power Configurable Gate with Voltage-Level Translator

Features

- Single Supply Voltage Translator
 - 1.8V to 3.3V Input at V_{CC}=3.3V
 - 1.8V to 2.5V Input at V_{CC} =2.5V
- 2.3V to 3.6V V_{CC} Supply Voltage Operation
- 3.6V Over-Voltage Tolerant I/O's at V_{CC} from 2.3V to 3.6V
- Power-Off High-Impedance Inputs and Outputs
- Low Static Power Consumption
 I_{CC}=0.9µA Maximum
- Low Dynamic Power Consumption
 C_{PD}=2.7pF Typical at 3.3V
- Ultra-Small MicroPakTM Packages


Description

The 74AUP1T97 is a universal configurable 2-input logic gate that provides single supply voltage level translation. This device is designed for applications with inputs switching levels that accept 1.8V low voltage CMOS signals while operating from either a single 2.5V or 3.3V supply voltage. The 74AUP1T97 is an ideal low power solution for mixed voltage signal applications especially for battery-powered portable applications. This product guarantees very low static and dynamic power consumption across entire voltage range. All inputs are implemented with hysteresis to allow for slower transition input signals and better switching noise immunity.

The 74AUP1T97 provides for multiple functions as determined by various configurations of the three inputs. The potential logic functions provided are MUX, AND, NAND, OR, and NOR, inverter and buffer. Refer to Figures 3 to 9.

Ordering Information

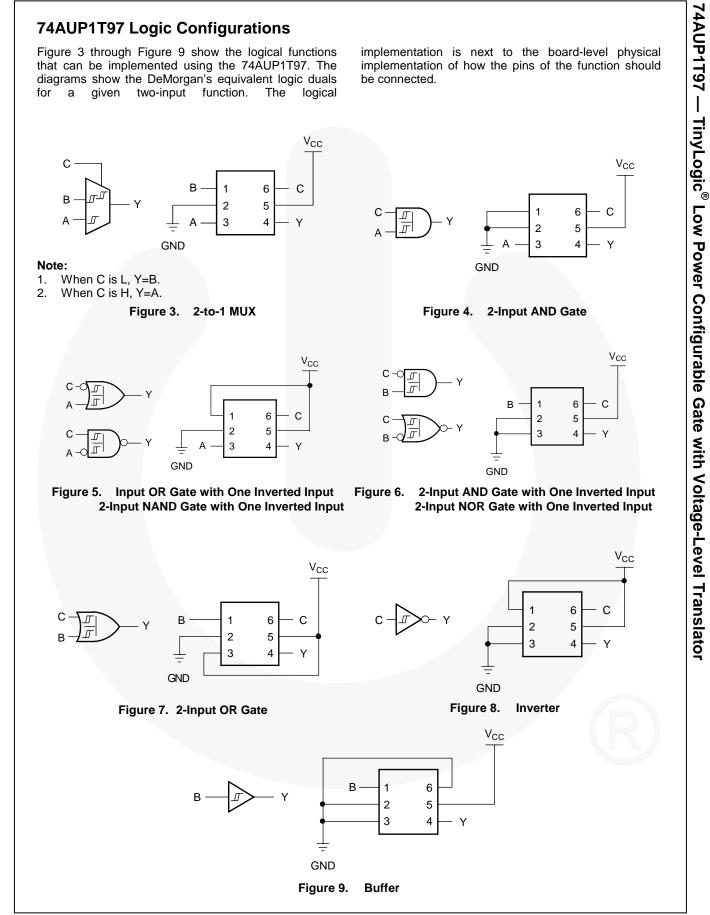
5			
Part Number	Top Mark	Package	Packing Method
74AUP1T97L6X	АН	6-Lead MicroPak™, 1.0mm Wide	5000 Units on Tape & Reel
74AUP1T97FHX	AH	6-Lead, MicroPak2™, 1x1mm Body, .35mm Pitch	5000 Units on Tape & Reel

Pin Definitions

Pin #	Name	Description
1	В	Data Input
2	GND	Ground
3	А	Data Input
4	Y	Output
5	V _{cc}	Supply Voltage
6	С	Data Input

7
4A
ЧP
Ϊ
97
- TinyL
nyl
Г О
gic
Ю М
P
v ₹
er
င္ပ
nfi
gu
rat
ble
Ga
Ite
×i
ťh
<u>v</u>
Itaç
ge-
Le
4 AUP1T97 — TinyLogic $^{ extsf{B}}$ Low Power Configurable Gate with Voltage-Level Translatc
Ţ
an
sla
tor
•

Function Table


	Inputs		74AUPIT97
С	В	Α	Y=Output
L	L	L	L
L	L	Н	L
L	н	L	Н
L	н	Н	Н
н	L	L	L
н	L	Н	Н
н	н	L	L
Н	Н	Н	Н

H = HIGH Logic Level

L = LOW Logic Level

Function Selection Table

Logic Function	Connection Configuration
2-to-1 MUX	Figure 3
2-Input AND Gate	Figure 4
2-Input OR Gate with One Inverted Input	Figure 5
2-Input NAND Gate with One Inverted Input	Figure 5
2-Input AND Gate with One Inverted Input	Figure 6
2-Input NOR Gate with One Inverted Input	Figure 6
2-Input OR Gate	Figure 7
Inverter	Figure 8
Buffer	Figure 9

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Supply Voltage		-0.5	4.6	V
V _{IN}	DC Input Voltage		-0.5	4.6	V
M		HIGH or LOW State ⁽³⁾	-0.5	V _{CC} + 0.5	V
V _{OUT}	DC Output Voltage	V _{CC} =0V	-0.5	4.6	v
I _{IK}	DC Input Diode Current	V _{IN} < 0V		-50	mA
	DC Output Diada Current	V _{OUT} < 0V		-50	
l _{oκ}	DC Output Diode Current	$V_{OUT} > V_{CC}$		+50	mA
I _{OH} / I _{OL}	DC Output Source / Sink Curre	ent		±50	mA
lo	Continuous Output Current			±20	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Supply Pin			±50	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature Under E	Bias		+150	°C
TL	Junction Lead Temperature, S	oldering 10s		+260	°C
P	Dever Dissignation at + 95%	MicroPak-6		130	
PD	Power Dissipation at +85°C	MicroPak2-6		120	mW
FOD	Human Body Model, JEDEC:J	ESD22-A114		5000+	N/
ESD	Charged Device Model, JEDE	C:JESD22-C101		2000	V

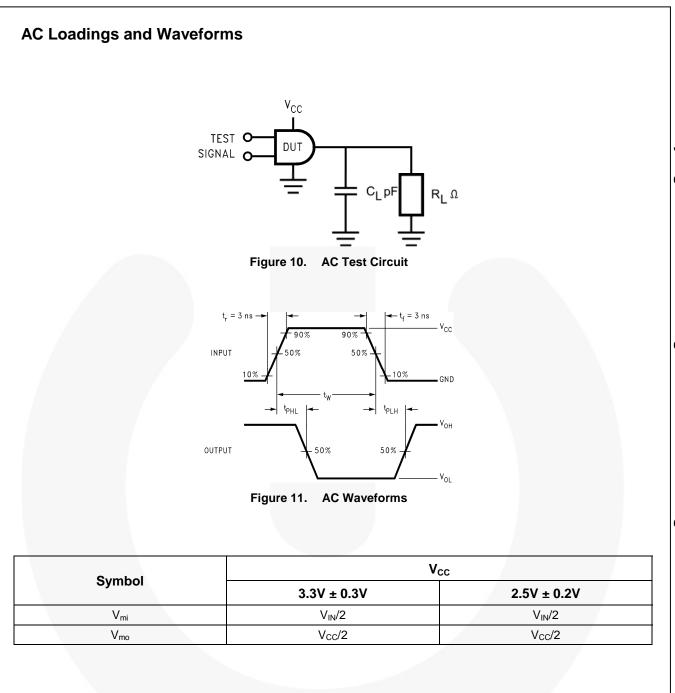
Note:

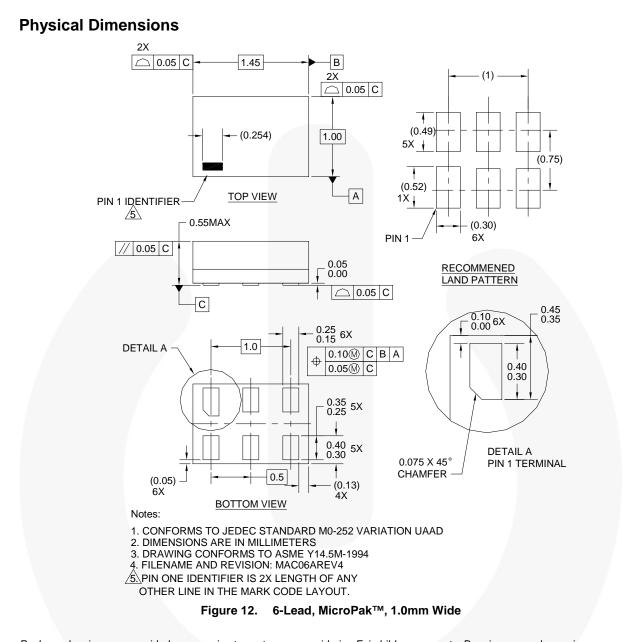
3. I_O absolute maximum rating must be observed.

Recommended Operating Conditions⁽⁴⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit	
V _{CC}	Supply Voltage		2.3	3.6	V	
V _{IN}	Input Voltage		0	3.6	V	
V		V _{CC} =0V	0	3.6	v	
V _{OUT}	Output Voltage	HIGH or LOW State	0	Vcc	v	
1/1	Output Current	V _{CC} =3.0V to 3.6V		±4.0	mA	
I _{OH} /I _{OL}	Culput Cullent	V _{CC} =2.3V to 2.7V		±3.1	ША	
TA	Operating Temperature, Free Air		-40	+85	°C	
0	Thermal Resistance	MicroPak-6		500	°C/W	
θ_{JA}	Thermal Resistance	MicroPak2-6		560		


Note:

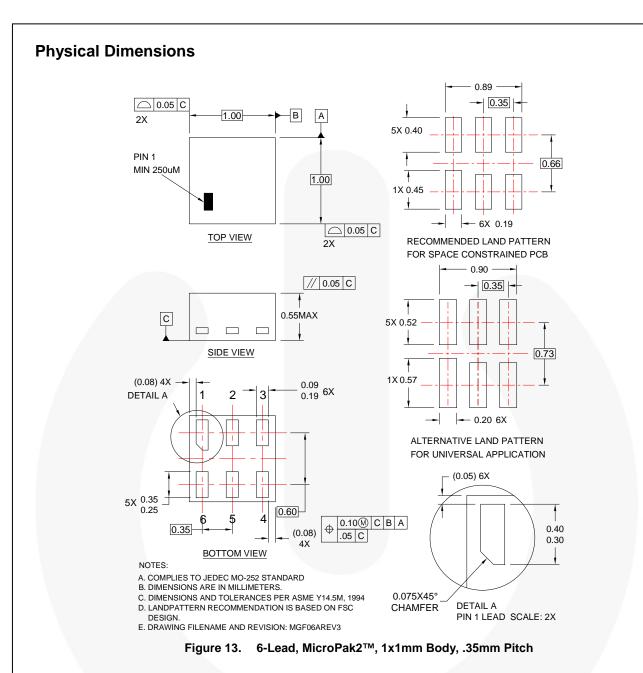

4. Unused inputs must be held HIGH or LOW. They may not float.

Symbol Boromotor				T _A =+25°C		T _A =-40 t	o +85°C	Unite	
Symbol	Parameter	V _{cc}	Conditions	Min.	Max.	Min.	Max.	Units	
VP	Positive Threshold	2.3V to 2.7V		0.60	1.10	0.60	1.10	v	
۷P	Voltage	3.0V to 3.6V		0.75	1.16	0.75	1.19	v	
V _N	Negative	2.3V to 2.7V		0.35	0.60	0.35	0.60	v	
۷N	Threshold Voltage	3.0V to 3.6V		0.50	0.85	0.50	0.85	v	
Vн		2.3V to 2.7V		0.23	0.60	0.10	0.60	v	
VН	Hysteresis Voltage	3.0V to 3.6V		0.25	0.56	0.15	0.56	v	
		$2.3V \leq V_{CC} \leq 3.6V$	I _{ОН} =-20µА	V _{CC} -0.1		V _{CC} -0.1			
		2.3V	I _{OH} =-2.3mA	2.05		1.97			
V _{OH}	V _{OH} HIGH Level Output Voltage		2.3V	I _{OH} =-3.1mA	1.90		1.85		V
		2.01/	I _{OH} =-2.7mA	2.72		2.67			
		3.0V	I _{OH} =-4mA	2.60		2.55			
		$2.3V \leq V_{CC} \leq 3.6V$	I _{OL} =20µA		0.10		0.10	v	
	/o∟ LOW Level Output Voltage	2.3V	I _{OL} =2.3mA		0.31		0.33		
Vol		2.3V	I _{OL} =3.1mA		0.44		0.45		
		2.01/	I _{OL} =2.7mA		0.31		0.33		
			3.0V	I _{OL} =4.0mA		0.44		0.45	
I _{IN}	Input Leakage Current	0V to 3.6V	$0 \leq V_{IN} \leq ~3.6$		±0.10		±0.50	μA	
I _{OFF}	Power Off Leakage Current	0V	$0 \leq \left(V_{IN}, V_O\right) \leq 3.6$		0.10		0.50	μA	
ΔI_{OFF}	Additional Power Off Leakage Current	0V to 0.2V	V_{IN} or $V_{O}=0V$ to 3.6V		0.20		0.60	μA	
	Quiescent Supply	0.0)///- 0.0)/	$V_{IN}=V_{CC}$ or GND		0.50		0.90		
I _{CC}	Current	2.3V to 3.6V	$V_{CC} \leq V_{IN} \leq 3.6V$				±0.90	μA	
	Increase in I _{CC} per	2.3V to 2.7V	One Input at 0.3V or 1.1V, other Inputs at 0 or V_{CC}				4		
∆I _{CC} Increase in I _{CC} per Input	3.0V to 3.6V	One Input at 0.45V or 1.2V, other Inputs at 0 or V_{CC}				12	- μΑ		

Symbol Parameter		N N	O and it is a set	Т		С	T _A =-40 t	o +85°C		F :
Symbol	Parameter	V _{cc}	Conditions	Min.	Тур.	Max.	Тур.	Max.	Units	Figure
		$\begin{array}{l} 2.30V \leq V_{CC} \leq 2.70V, \\ V_{IN} \mbox{=} 1.65V \mbox{ to } 1.95V \end{array}$		1.1	3.7	5.5	1.1	6.8		
		$\begin{array}{l} 2.30V \leq V_{CC} \leq 2.70V, \\ V_{IN} \mbox{=} 2.30V \mbox{ to } 2.70V \end{array} \label{eq:VCC}$		1.1	3.8	6.5	1.1	7.0		
		$\begin{array}{l} 2.30V \leq V_{CC} \leq 2.70V, \\ V_{\text{IN}} \mbox{=} 3.0V \mbox{ to } 3.60V \end{array}$	C∟=5pF,	1.1	3.9	6.0	1.1	6.5		
		$\begin{array}{l} 3.00V \leq V_{CC} \leq 3.60V, \\ V_{IN} {=} 1.65V \text{ to } 1.95V \end{array}$	$R_L=1M\Omega$	1.0	3.3	4.9	1.0	8.0		
		$\begin{array}{l} 3.00V \leq V_{CC} \leq 3.60V, \\ V_{IN} \mbox{=} 2.30V \mbox{ to } 2.70V \end{array}$		1.0	3.2	4.6	1.0	5.8		
		$\begin{array}{l} 3.00V \leq V_{CC} \leq 3.60V, \\ V_{\text{IN}} {=} 3.00V \text{ to } 3.60V \end{array}$		1.0	3.1	4.7	1.0	5.5		
		$\begin{array}{l} 2.30V \leq V_{CC} \leq 2.70V, \\ V_{IN} {=} 1.65V \text{ to } 1.95V \end{array}$		1.3	4.1	6.5	1.0	7.9		
		$\begin{array}{l} 2.30V \leq V_{CC} \leq 2.70V, \\ V_{IN} = 2.30V \ to \ 2.70V \end{array}$		1.3	4.0	6.2	1.0	7.1		Figure 10
		$\begin{array}{l} 2.30V \leq V_{CC} \leq 2.70V, \\ V_{\text{IN}} = 3.0V \text{ to } 3.60V \end{array}$	C∟=10pF,	1.3	3.7	5.7	1.0	6.5		
		$\begin{array}{l} 3.00V \leq V_{CC} \leq 3.60V, \\ V_{IN} \mbox{=} 1.65V \mbox{ to } 1.95V \end{array}$	R _L =1MΩ	1.3	3.5	5.6	1.0	8.5	ns	
		$\begin{array}{l} 3.00V \leq V_{CC} \leq 3.60V, \\ V_{IN} \mbox{=} 2.30V \mbox{ to } 2.70V \end{array}$		1.3	3.4	5.3	1.0	6.1		
	Propagation	$\begin{array}{l} 3.00V \leq V_{CC} \leq 3.60V, \\ V_{IN} \mbox{=} 3.00V \mbox{ to } 3.60V \end{array} \label{eq:VCC}$		1.3	3.3	5.2	1.0	5.9		
νΡΗL, νΡLΗ	Delay	$\begin{array}{l} 2.30V \leq V_{CC} \leq 2.70V, \\ V_{IN} \mbox{=} 1.65V \mbox{ to } 1.95V \end{array}$		1.5	4.6	6.9	6.9 1.0 8.7	115	Figure 11	
		$\begin{array}{l} 2.30V \leq V_{CC} \leq 2.70V, \\ V_{IN} \mbox{=} 2.30V \mbox{ to } 2.70V \end{array} \label{eq:VCC}$	_	1.5	4.4	6.8	1.0	7.9		
		$\begin{array}{l} 2.30V \leq V_{CC} \leq 2.70V, \\ V_{\text{IN}} \mbox{=} 3.0V \mbox{ to } 3.60V \end{array}$		1.5	4.2	6.3	1.0	7.4		
		$\begin{array}{l} 3.00V \leq V_{CC} \leq 3.60V, \\ V_{IN} \mbox{=} 1.65V \mbox{ to } 1.95V \end{array}$		1.3	3.9	6.2	1.0	9.1		
		$\begin{array}{l} 3.00V \leq V_{CC} \leq 3.60V, \\ V_{IN} \mbox{=} 2.30V \mbox{ to } 2.70V \end{array}$		1.3	3.8	5.6	1.0	6.8		
		$\begin{array}{l} 3.00V \leq V_{CC} \leq 3.60V, \\ V_{IN} {=} 3.00V \text{ to } 3.60V \end{array}$		1.3	3.8	5.6	1.0	6.2	1	
		$\begin{array}{l} 2.30V \leq V_{CC} \leq 2.70V, \\ V_{IN} \mbox{=} 1.65V \mbox{ to } 1.95V \end{array}$		1.3	4.2	7.9	1.3	8.5		
		$\begin{array}{l} 2.30V \leq V_{CC} \leq 2.70V, \\ V_{IN} \mbox{=} 2.30V \mbox{ to } 2.70V \end{array}$		1.3	3.9	7.9	1.3	8.5		
		$\begin{array}{l} 2.30V \leq V_{CC} \leq 2.70V, \\ V_{\text{IN}} \mbox{=} 3.0V \mbox{ to } 3.60V \end{array}$	C _L =30pF,	1.0	3.7	7.3	1.0	8.9		
		$\begin{array}{l} 3.00V \leq V_{CC} \leq 3.60V, \\ V_{IN} \mbox{=} 1.65V \mbox{ to } 1.95V \end{array}$	$R_L=1M\Omega$	1.3	3.5	6.1	1.3	7.9		R
		$\begin{array}{l} 3.00V \leq V_{CC} \leq 3.60V, \\ V_{IN} = 2.30V \ to \ 2.70V \end{array}$		1.1	3.0	5.9	1.1	6.8		
		$\begin{array}{l} 3.00V \leq V_{CC} \leq 3.60V, \\ V_{IN} = 3.00V \text{ to } 3.60V \end{array}$		1.0	2.7	5.7	1.0	6.5		
C _{IN}	Input Capacitance	0			2.1				pF	
C _{OUT}	Output Capacitance	0			3.0				pF	
	Power	$2.30V \le V_{CC} \le 2.70V$			2.0					

74AUP1T97 — TinyLogic[®] Low Power Configurable Gate with Voltage-Level Translator

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.


Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

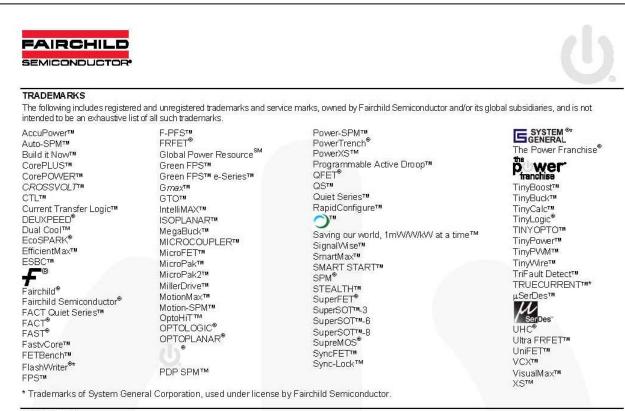
Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: <u>http://www.fairchildsemi.com/products/logic/pdf/micropak_tr.pdf</u>.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
L6X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

74AUP1T97 — TinyLogic $^{ extsf{B}}$ Low Power Configurable Gate with Voltage-Level Translator

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.


Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: <u>http://www.fairchildsemi.com/packaging/MicroPAK2_6L_tr.pdf</u>.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
FHX	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

74AUP1T97 — TinyLogic $^{ extsf{w}}$ Low Power Configurable Gate with Voltage-Level Translator

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Data sheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 150

74AUP1T97 —

TinyLogic®

Low Power Configurable

Gate with Voltage-Level Translator

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC